МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РЕСПУБЛИКИ ТАТАРСТАН МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ ДОПОЛНИТЕЛЬНОГО ОБРАЗОВАНИЯ «ЦЕНТР ДОПОЛНИТЕЛЬНОГО ОБРАЗОВАНИЯ ДЕТЕЙ «СЭЯХЭТ» КИРОВСКОГО РАЙОНА Г. КАЗАНИ

Принята на заседании педагогического совета МБУДО «ЦДОД «Сэяхэт»	«Утверждаю» Директор МБУДО «ЦДОД «Сэях	
Протокол №	М.Н.Захарова	
	Приказ №	
от «»20г.	от «»20г.	
ДОКУМЕНТ ПОДПИ ЭЛЕКТРОННОЙ ПОДП СВЕДЕНИЯ О СЕРТИФИКИ Сертификат: 4569B00048B2D09141238 Владелец: Захарова Марина Николаев	ПИСЬЮ ATE 9П 89850E2BC919	
Действителен с 16.12.2024 до 16.03.20)	

Дополнительная общеобразовательная общеразвивающая программа «RoboKids»

Направленность: техническая Возраст учащихся: 7-10 лет Срок реализации: 1 год

Авторы-составители: Гончар Илья Александрович, Педагог дополнительного образования

Казань, 2024 г.

Информационная карта образовательной программы

1.	Образовательная организация	Муниципальное бюджетное учреждение дополнительного образования «Центр		
		дополнительного образования детей «Сэяхэт» Кировского района г. Казани		
2.	Полное название программы	Дополнительная общеразвивающая общеобразовательная программа «RoboKids»		
3.	Направленность программы	техническая		
4.	Сведения о разработчиках			
4.1.	ФИО, должность	Гончар Илья Александрович, педагог дополнительного образования		
5.	Сведения о программе:	педагет депенительного сорысовыны		
5.1.	Срок реализации	1 год		
5.2.	Возраст обучающихся	7-10 лет		
5.3.	Характеристика программы: - тип программы - вид программы	дополнительная общеобразовательная общеразвивающая		
5.4.	Цель программы	создание условий для формирования умений и навыков у обучающихся в сфере технического проектирования, моделирования и конструирования научно-технических объектов в робототехнике		
6.	Формы и методы образовательной деятельности	Формы обучения: фронтальная, групповая, индивидуальная Формы проведения занятий: традиционные и нетрадиционные. Методы: наглядный, информационнорецептивный, репродуктивный, практический, словесный, проблемный, игровой, частичнопоисковый, геймификация.		
7.	Дата утверждения и последней корректировки программы			
8.	Рецензенты	Силуянова С.М., Хаматшина Н.В.		

Пояснительная записка

Дополнительная общеобразовательная общеразвивающая программа «RoboKids» имеет техническую направленность.

Программа составлена на основе следующих нормативно-правовых документов и рекомендаций:

- 1. Федеральный Закон от 29 декабря 2012 г. № 273-ФЗ «Об образовании в Российской Федерации»;
- 2. Федеральный закон от 31 июля 2020 г. № 304-ФЗ «О внесении изменений в Федеральный закон «Об образовании в Российской Федерации» по вопросам воспитания обучающихся»;
- 3. Федеральный закон Российской Федерации от 24 июля 1998 г. № 124-ФЗ «Об основных гарантиях прав ребенка в Российской Федерации»;
- 4. Концепция развития дополнительного образования детей до 2030 года, утвержденная распоряжением Правительства Российской Федерации от 31 марта 2022 г. № 678-р (в редакции от 15 мая 2023 г.);
- 5. Стратегия развития воспитания в Российской Федерации на период до 2025 года, утвержденная Распоряжением Правительства Российской Федерации от 29 мая 2015 г. № 996-р;
- 6. Указ Президента Российской Федерации от 9 ноября 2022 г. № 809 «Об утверждении Основ государственной политики по сохранению и укреплению традиционных российских духовно-нравственных ценностей»;
- 7. Указ Президента Российской Федерации от 24 декабря 2014 г. № 808 «Об утверждении Основ государственной культурной политики» (в редакции от 25 января 2023 г. № 35);
- 8. Приказ Министерства просвещения Российской Федерации от 27 июля 2022 г. № 629 «Об утверждении Порядка организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам»;

- 9. Приказ Министерства просвещения Российской Федерации от 3 сентября 2019 г. № 467 «Об утверждении Целевой модели развития региональных систем дополнительного образования детей» (в редакции от 21 апреля 2023 г.);
- 10. Уставом Муниципального бюджетного учреждения дополнительного образования «Центр дополнительного образования детей «Сэяхэт» Кировскогорайона г. Казани;
- 11. Положением о дополнительной общеобразовательной общеразвивающей программе педагога дополнительного образования МБУДО «Центр дополнительного образования детей «Сэяхэт» Кировского района г. Казани.

Обучение по программе прививает ребенку умение работать с предоставленными готовыми конструкторами и собирать различные конструкции, но и сразу же внедрять в эти технические модели элементы автоматизации, заставляя простейшие механизмы выполнять определенные действий, более того именно эти простейшие, порой монотонные действий для человека, будут выполняться роботами под управлением простейших компьютерных программ, которые и будут создаваться детьми.

Новизна данной программы состоит в том, что она решает не только конструкторские, научные, но и эстетические вопросы. Программа ориентирована на целостное освоение материала: обучающийся приобретает художественно-конструкторские навыки, совершенствуется в практической деятельности, реализуется в творчестве.

Актуальность программы определяется тем, что в настоящее время приоритетами государственной политики в сфере образования становится поддержка и развитие детского технического творчества, привлечение молодежи в научно-техническую сферу профессиональной деятельности и повышение престижа научно-технических профессий. Бурное развитие компьютерных технологий формирует иное восприятие реальности. Существующий государственный заказ на развитие технического творчества

подтверждается возрастающим интересом детей и родителей к этой направленности дополнительного образования, как средству формирования технологической и инженерной грамотности детей, их будущей профессиональной и социальной успешности.

Педагогическая целесообразность программы «RoboKids» определяется с учетом возрастных особенностей обучающихся, широкими возможностями социализации в процессе привития практико-ориентированных навыков, пространственного мышления, учёта интересов.

Отличительная особенность программы возможность объединить сразу несколько направлений, таких как программирование и конструирование, что позволяет быстро и эффективно развивать у детей школьного возраста логическое мышление, способность к самостоятельному решению возникающих нестандартных ситуаций, которые будут требовать такого же не стандартного решения. Робототехника с одной стороны это проектирование моделей и их конструирование, а с другой стороны это классическое программирование.

Цель программы: создание условий для формирования умений и навыков у обучающихся в сфере технического проектирования, моделирования и конструирования научно-технических объектов в робототехнике.

Задачи программы:

Обучающие:

- дать первоначальные знания по устройству робототехнических устройств;
- научить основным приемам сборки и программирования робототехнических средств;
- сформировать общенаучные и технологические навыки конструирования и проектирования;
- ознакомить с правилами безопасной работы с инструментами необходимыми при конструировании робототехнических средств.

Развивающие:

- развивать творческую инициативу и самостоятельность;

- развивать психофизиологические качества: память, внимание, способность логически мыслить, анализировать, концентрировать внимание на главном;
- способствовать развитию у обучающихся пространственного, критического, технического мышления, самоконтроля и изобретательности;
- развить способности осознанно ставить перед собой конкретные задачи, разбивать их на отдельные этапы и добиваться их выполнения.

Воспитывающие:

- сформировать интерес к практическому применению знаний и умений, стремление к получению качественного результата;
- воспитывать умение работать в коллективе
- поддерживать представление обучающихся о значимости общечеловеческих нравственных ценностей, доброжелательности, сотрудничества.

Адресат программы: Программа разработана для обучающихся в возрасте от 7 до 10 лет, желающих заниматься конструированием, приобрести навыки программирования и знание механизмов работы роботов.

Общее количество учебных часов составляет 72 часа в год, что соответствует 72 занятиям в год, продолжительность одного занятия составляет 1 академический час.

Срок реализации программы – 1 год.

Периодичность и продолжительность занятий соответствуют санитарноэпидемиологическим правилам и нормативам СП 2.4. 3648-20 (п. 2.10.2, 2.10.3, 3.6.2).

Формы обучения: групповые, фронтальные.

Формы проведения занятий определяются особен6ностями образовательного процесса, целью и содержанием разделов и тем изучаемого материала. Занятия могут быть традиционные: беседы, рассказ, мини-лекция, практическое занятие, занятие-исследование, защита проекта, модели и нетрадиционные: тематические и сюжетные игры, турнир, соревнования.

Методы проведения занятий. При планировании и проведении

занятий в объединении «RoboKids» применяются следующие методы обучения и воспитания:

- 1) Наглядный демонстрация способов построения маршрутов, приемов работы блоков.
- 2) Информационно-рецептивный обследование деталей блоков, которое предполагает определения пространственных соотношений между ними (назад, вперед, влево, вправо, на месте и т.д.). Совместная деятельность педагога и обучающегося.
- 3) Репродуктивный воспроизводство знаний и способов деятельности.
- 4) Практический использование детьми на практике полученных знаний и увиденных приёмов работы.
- 5) Словесный краткое описание и объяснение действий, сопровождение и демонстрация образцов, разных вариантов построений.
- 6) Проблемный постановка проблемы и поиск решения. Творческое использование готовых заданий (предметов), самостоятельное их преобразование.
- 7) Игровой использование сюжета игр для организации детской деятельности, персонажей для обыгрывания сюжета.
- 8) Частично-поисковый решение проблемных задач с помощью педагога.
- 9) Геймификация процесс использования игрового мышления и динамики игр для вовлечения обучающихся и решения задач. Игровая технология повышает интерес к занятиям, повышает мотивацию, поднимает конкуренцию в образовательном пространстве.

Планируемые результаты:

Личностные результаты:

- развитие психофизиологических качеств, самоорганизованности, навыков сотрудничества с педагогами и сверстниками в различных социальных ситуациях;
- формирование уважительного отношения к иному мнению;
- умение образно мыслить;

- анализировать ситуацию и самостоятельно находить ответы на вопросы путем логических рассуждений;
- развивать инициативу;
- создавать и воплощать технические идеи в жизнь.

Метапредметные результаты:

- овладение логическими действиями сравнения, анализа, синтеза, обобщения;
- установление аналогий и причинно-следственных связей;
- освоение способов решения проблем творческого и поискового характера;
- овладение навыками сотрудничества и самостоятельности;
- умение довести решение задачи до работающей модели;
- обогащение запаса научными понятиями и законами математики, физики, информатики, окружающего мира, технологии;
- развитие кругозора.

Предметные результаты:

- использование приобретенных знаний и умений для творческого решения несложных конструкторских и технологических задач;
- овладение основами логического и алгоритмического мышления;
- правила безопасной работы с инструментами и механизмами, необходимыми при конструировании с помощью робототехнических средств;
- умение творчески подходить к решению любой задачи;
- развитие устойчивого интереса к техническому творчеству и индивидуальной проектной деятельности;
- владение методами практической работы по заданным схемам и алгоритмам.

Формы подведения итогов реализации программы. Способом проверки результата обучения являются повседневное систематическое наблюдение за учащимися и собеседование. Это позволяет определить степень самостоятельности учащихся и их интереса к занятиям, уровень культуры и мастерства. Подведение итогов реализации программы проходит в форме соревнований по робототехнике внутри объединения.

Учебно-тематический план

№	Тема	Количество	Из них	
		часов	теория	практика
1.	Вводное занятие	2	1	1
1.1.	Введение в образовательную программу	1	0,5	0,5
1.2.	Особенности робототехнического набора LEGO WEDO 2.0	1	0,5	0,5
2.	Виды механических передач	28	14	14
2.1.	Рычаг	4	2	2
2.2.	Зубчатая передача	4	2	2
2.3.	Зубчато-коническая передача	4	2	2
2.4.	Ремённая передача	4	2	2
2.5.	Червячная передача	4	2	2
2.6.	Кулачковая передача	4	2	2
2.7.	Реечная передача	4	2	2
3.	Электромотор	12	6	6
3.1.	Движение по/против часовой стрелки	4	2	2
3.2.	Мощность электромотора	4	2	2
3.3.	Взаимодействие двух моторов	4	2	2
4.	Датчики	20	10	10
4.1.	Датчик наклона	4	2	2
4.2.	Датчик движения	4	2	2
4.3.	Датчик звука	4	2	2
4.4.	Взаимодействие мотора с датчиком наклона	4	2	2
4.5.	Взаимодействие мотора с датчиком движения	4	2	2
5.	Битва роботов	9	3	6
5.1.	Робот-тягач	3	1	2
5.2.	Робот-сумоист	3	1	2
5.3.	Робот-гонщик	3	1	2
6.	Итоговое занятие	1		1
	Итого:	72	34	38

Содержание тем учебного курса

Раздел 1. Вводное занятие (2 ч.).

Тема 1. Введение в образовательную программу.

Теория: Техника безопасности на занятиях, правила поведения в Центре и эвакуации. Знакомство с целью, задачами программы и дальнейшей работой на учебный год.

Практика: Знакомство с группой, работа в малых группах, сплочение группы, командообразование.

Тема 2. Особенности робототехнического набора LEGO WEDO 2.0.

Теория: изучение названий деталей и принципы крепления деталей набора Lego WeDo 2.0.

Практика: оформление инженерного словаря, конструирование простейших моделей по заданной теме, выполнение карточек с заданиями.

Раздел 2. Виды механических передач (28 ч.).

Тема 1. Рычаг.

Теория: формирование понятие «рычаг» и принцип работы рычажного механизма.

Практика: создание принципиально новых моделей, экспериментирование.

Тема 2. Зубчатая передача.

Теория: формирование общего представления о зубчатых колесах (ведущее и ведомое колесо) и изменения мощности работы зубчатых колёс.

Практика: создание модели с зубчатой передачей и ее испытание. Изменение передачи с повышающей на понижающую.

Тема 3. Зубчато-коническая передача.

Теория: выявление отличий зубчатого колеса от конического, сформировать представления о назначении конической передаче и ее применения в производстве.

Практика: создание модели с конической передачей и ее испытание. Использование в конструкции передач зубчатой и конической.

Тема 4. Ремённая передача.

Теория: формирование понятий «шкив» и «ремень». Изучение видов ременных передач: открытая; перекрестная; полу перекрёстная; угловая.

Практика: оформление инженерного словаря, создание и исследование принципиальных моделей.

Тема 5. Червячная передача.

Теория: формирование понятие «червяк». Изучение принципа работы червячного механизма.

Практика: создание и испытание модели с использованием червячного механизма.

Тема 6. Кулачковая передача.

Теория: формирование понятие «кулачок». Изучение принципа работы кулачкового механизма.

Практика: создание и испытание модели с использованием кулачкового механизма.

Тема 7. Реечная передача.

Теория: формирование понятие «рейка». Изучение принципа работы реечного механизма.

Практика: создание и испытание модели с использованием реечного механизма.

Раздел 3. Электромотор (12 ч.).

Тема 1. Движение по/против часовой стрелки.

Теория: дать представления о моторе, его устройстве и работе. Изучение блочного программирования.

Практика: конструирование и программирование модели, с использованием электромотора.

Тема 2. Мощность электромотора.

Теория: формирование принципа изменения мощности электромотора с помощью блоков программирования.

Практика: конструирование и программирование модели, с использованием электромотора.

Тема 3. Взаимодействие двух моторов.

Теория: формирование принципа взаимодействия двух электромоторов через специальные блоки программирования.

Практика: конструирование и программирование модели, с использованием электромотора.

Раздел 4. Датчики (20 ч.).

Тема 1. Датчик наклона.

Теория: формирование принципа работы датчика наклона.

Практика: конструирование модели с использованием датчика наклона, программирование и испытание модели.

Тема 2. Датчик движения.

Теория: формирование принципа работы датчика движения.

Практика: конструирование модели с использованием датчика движения, программирование и испытание модели.

Тема 3. Датчик звука.

Теория: формирование принципа работы датчика звука (использование микрофона на ноутбуке).

Практика: конструирование модели с использованием электромотора, программирование и испытание модели.

Тема 4. Взаимодействие мотора с датчиком наклона.

Теория: формирование принципа взаимодействия датчика наклона и электромотора через блоки программирования.

Практика: конструирование, программирование и испытание модели.

Тема 5. Взаимодействие мотора с датчиком движения.

Теория: формирование принципа взаимодействия датчика движения и электромотора через блоки программирования.

Практика: конструирование, программирование и испытание модели.

Раздел 5. Битва роботов (9 ч.).

Тема 1. Робот-тягач.

Теория: формирование представления о видах и правилах соревнований по робототехнике.

Практика: творческое конструирование, программирование модели. Соревнования внутри группы.

Тема 2. Робот-сумоист.

Теория: формирование представления о видах и правилах соревнований по робототехнике.

Практика: творческое конструирование, программирование модели. Соревнования внутри группы.

Тема 3. Робот-гонщик.

Теория: формирование представления о видах и правилах соревнований по робототехнике.

Практика: творческое конструирование, программирование модели. Соревнования внутри группы.

Раздел 6. Итоговое занятие (2 ч.)

Итоговое занятие по завершению курса Программы в форме соревнований по робототехнике внутри объединения.

Требования к ЗУН учащихся

Учащиеся после первого года обучения должны знать:

- основные детали и инструменты лего-конструкторов;
- основные принципы механики, электромеханики, робототехники их характеристики;
- разновидности и принципы работы датчиков;
- принципы и технологию создания моделей, освоить навыки свободного конструирования (открытие, создание, сохранение и т.д.).

Учащиеся после первого года обучения должны уметь:

- строить алгоритм действий для воплощения поставленных творческих задач;
- анализировать задачи, требующие автоматизации;
- формулировать требования к разрабатываемым роботам;
- собирать конструкции роботов с использованием готовых элементов;
- использовать различные типы датчиков;
- обрабатывать информацию, приходящую с датчиков;
- творчески решать поставленные задачи.

Организационно-педагогические условия реализации программы

Данная программа может быть эффективно реализована во взаимосвязи методического обеспечения программы и материально-технических условий.

Материально-техническое обеспечение образовательного процесса:

- компьютерные столы и стулья (по количеству обучающихся в группе);
- рабочий стол и стул для педагога;
- компьютеры для педагога и обучающихся с необходимым программным обеспечением;
- интерактивная доска;
- выход в сеть Internet;
- демонстрационный стол;
- образовательный набор WEDO 2.0;
- образовательный набор TINKAMO TINKER KIT;
- образовательный набор LEGO SPIKE PRIME.

Методическое обеспечение образовательного процесса:

Методическое обеспечение программы включает в себя:

- дополнительную общеобразовательную общеразвивающую программу;
- календарный учебный график;
- дидактические материалы (схемы сборки; видеофильмы, мультимедийные материалы, компьютерные программные средства);
- интернет-ресурсы.

Учебно-воспитательный процесс направлен на развитие природных задатков учащихся, на реализацию их интересов и способностей. Каждое занятие обеспечивает развитие личности. При планировании и проведении занятий применяется личностно-ориентированная технология обучения, в центре внимания которой неповторимая личность, стремящаяся к реализации своих возможностей, а также системно-деятельностный метод обучения.

Данная программа допускает творческий, импровизированный подход со стороны детей и педагога того, что касается возможной замены порядка раздела, введения дополнительного материала, методики проведения занятий.

Руководствуясь данной программой, педагог имеет возможность увеличить или уменьшить объем и степень технической сложности материала в зависимости от состава группы и конкретных условий работы.

На занятиях в процессе реализации программы «RoboKids» используются дидактические игры, отличительной особенностью которых является обучение средствами активной и интересной для детей игровой деятельности.

Дидактические игры, используемые на занятиях, способствуют:

- развитию мышления (умение доказывать свою точку зрения, анализировать конструкции, сравнивать, генерировать идеи и на их основе синтезировать свои собственные конструкции), речи (увеличение словарного запаса, выработка научного стиля речи), мелкой моторики;
- воспитанию ответственности, аккуратности, отношения к себе как самореализующейся личности, к другим людям (прежде всего к сверстникам), к труду;
- обучению основам конструирования, моделирования, автоматического управления с помощью компьютера и формированию соответствующих навыков.

Как показала практика, эти игровые методы не только интересны обучающимся, но и стимулируют их к дальнейшей работе и саморазвитию, что с помощью традиционной отметки сделать практически невозможно.

Организационно-педагогическое обеспечение реализации программы:

Педагогическая реализации Дополнительной деятельность ПО «RoboKids» общеобразовательной общеразвивающей программы осуществляется лицами, имеющие высшее образование либо среднее профессиональное образование в рамках иного направления подготовки высшего образования И специальностей среднего профессионального образования при условии его соответствия дополнительным общеразвивающим программам, осуществляющей образовательную деятельность, и получение при необходимости после трудоустройства дополнительного профессионального

образования по направлению подготовки «Образование и педагогические науки».

Список используемой литературы

- 1. Беспалько, В.П. Основы теории педагогических систем: проблемы и методы психолого-педагогического обеспечения технических обучающих систем : монография / В.П. Беспалько. Воронеж : Издательство Воронежского университета, 1977. 304 с.
- 2. ЛЕГО-лаборатория (Control Lab):Справочное пособие, М., ИНТ, 1998. –150 стр.
- 3. Рыкова Е. А. LEGO-Лаборатория (LEGOControlLab). Учебно-методическое пособие. СПб, 2001,- 59 с
- 4. Технология и информатика: проекты и задания. ПервоРобот. Книга для учителя. М.:ИНТ. $80\ c$.
- 5. Тришина С. В. Информационная компетентность как педагогическая категория [Электронный ресурс]. ИНТЕРНЕТ-ЖУРНАЛ «ЭЙДОС» www.eidos.ru.
- 6. Чехлова А. В., Якушкин П. А. «Конструкторы LEGO DAKTA в курсе информационных технологий. Введение в робототехнику». М.: ИНТ, 2001г. —168 с.
- 7. Филиппов Сергей Уроки робототехники. Конструкция. Движение. Управление. - Робофишки: 2017. – 176с.
- 8. Шайдурова Н.В. Развитие ребёнка в конструктивной деятельности: Справочное пособие. – М.: ТЦ Сфера, 2008. – 128с

КАЛЕНДАРНЫЙ УЧЕБНЫЙ ГРАФИК

к дополнительной общеобразовательной общеразвивающей программе "RoboKids"

No No	Тема занятия	Кол-во часов
1	Введение в образовательную программу	1
2	Особенности робототехнического набора LEGO WEDO 2.0	1
3	Виды механических передач	1
4	Виды механических передач	1
5	Виды механических передач	1
6	Виды механических передач	1
7	Виды механических передач	1
8	Виды механических передач	1
9	Виды механических передач	1
10	Виды механических передач	1
11	Виды механических передач	1
12	Виды механических передач	1
13	Виды механических передач	1
14	Виды механических передач	1
15	Виды механических передач	1
16	Виды механических передач	1
17	Виды механических передач	1
18	Виды механических передач	1
19	Виды механических передач	1
20	Виды механических передач	1
21	Виды механических передач	1
22	Виды механических передач	1
23	Виды механических передач	1
24	Виды механических передач	1
25	Виды механических передач	1
26	Виды механических передач	1
27	Виды механических передач	1
28	Виды механических передач	1
29	Виды механических передач	1
30	Виды механических передач	1
31	Электромотор	1
32	Электромотор	1
33	Электромотор	1
34	Электромотор	1
35	Электромотор	1
36	Электромотор	1
37	Электромотор	1
38	Электромотор	1
39	Электромотор	1
40	Электромотор	1
41	Электромотор	1
42	Электромотор	1

43	Датчики	1
44	Датчики	1
45	Датчики	1
46	Датчики	1
47	Датчики	1
48	Датчики	1
49	Датчики	1
50	Датчики	1
51	Датчики	1
52	Датчики	1
53	Датчики	1
54	Датчики	1
55	Датчики	1
56	Датчики	1
57	Датчики	1
58	Датчики	1
59	Датчики	1
60	Датчики	1
61	Датчики	1
62	Датчики	1
63	Битва роботов	1
64	Битва роботов	1
65	Битва роботов	1
66	Битва роботов	1
67	Битва роботов	1
68	Битва роботов	1
69	Битва роботов	1
70	Битва роботов	1
71	Битва роботов	1
72	Итоговое занятие	1
	ИТОГО:	72

Лист согласования к документу № 75 от 14.04.2025 Инициатор согласования: Захарова М.Н. Директор Согласование инициировано: 14.04.2025 14:20

Тип согласования: последовательное					
N°	ФИО	Передано на визу	Срок согласования	Результат согласования	Замечания
1	Захарова М.Н.	14.04.2025 - 14:20		[©] Подписано 14.04.2025 - 14:21	-